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position. This strategy was employed for the straight- 
forward structure solution of 3-chloro-l,3,4- 
triphenylazetidin-2-one (AZET) (Colens, Declercq, 
Germain, Putzeys & Van Meerssche, 1974) with two 
CI atoms at arbitrary starting positions (for example, 
both placed at the origin). For such a search, a con- 
siderable amount of computing time may be saved 
by specifying a proper value for the allowed inter- 
molecular distance (e.g. for metal complexes) ; other- 
wise the distance tests could be rather ineffective. It 
may also be useful to calculate CFOM without 
TPRSUM (a PATSEE option) in order to give 
increased weight to TFOM, which is very reliable in 
such cases. 

The values for the figures of merit show that RFOM, 
TFOM and Re together are strongly indicative of the 
correct solution. TPRSUM is often only a local 
maximum but it enables the rapid location of the 
search fragment. All test examples (not only the five 
discussed here) confirm that PATSEE is reliable and 
widely applicable. In terms of computing times, it is 
also competitive with direct methods; under favour- 
able circumstances (see SUOA and MUNICH1)  it 
can even prove more economical. In any case, PAT- 
SEE offers a powerful alternative if chemical infor- 
mation is available. 
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(EE) is very much indebted to Professor Jack D. 

Dunitz for his enthusiastic interest and hospitality 
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Abstract 

The previously formulated new approach to the struc- 
ture analysis of a crystal based on the profound 
analogy between the problem of determination of 
thermodynamic equilibrium in statistical mechanics 
and the optimization problem for a function of many 
variables [Khachaturyan, Semenovskaya & Vain- 
shtein (1979). Soy. Phys. Crystallogr. 24, 519-524; 
(1981). Acta Crysr A37, 742-754] is developed. In 

this approach, a crystal structure is determined by 
the equilibrium low-temperature state of a model 
non-ideal gas composed of the atoms within a crystal 
unit cell, the unit cell and the R factor being regarded 
as a vessel and an interatomic interaction Hamil- 
tonian, respectively. In contrast to the above cited 
papers, the low-temperature equilibrium state is 
found by means of the Monte Carlo sampling scheme 
usually utilized in statistical mechanics applications. 
The main advantage of such a treatment is that the 
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system reaches the equilibrium state avoiding all 
'traps', metastable (local) minima of the free energy, 
and thus provides automatic determination of the 
crystal structure. The method is successfully tested 
on the known L-proline structure containing 32 non- 
hydrogen atoms per unit cell. The proposed statistical 
mechanics approach can also be applied with minor 
modifications to optimization problems in the multi- 
dimensional space of many variables. 

1. Introduction 

As is known, all input quantitative information used 
in crystal structure determination is  stored in the 
intensity array of diffraction reflections. The crystal 
structure determination is thus reduced to finding the 
spatial atomic distribution within a unit cell that 
would provide coincidence between calculated and 
observed intensities of diffraction reflections of the 
array. The linear R factor, 

R=Y, a(H)[IF(H)I-IF(H)obslI/ ~ a(H)iF(H)obsl, 
H H 

(1) 
may be considered for example as a quantitative 
measure of this coincidence. In (1), 

F(H)=E £(H)exp(-iZ~rHr) (2) 
J 

is the calculated structure amplitude related to a 
reciprocal-lattice vector H; rj is the vector indicating 
the position of the j th atom of an atomic configuration 
in a unit cell; index j enumerates all atoms entering 
the unit cell; IF(H)obs] =[l(H)obs] 1/2, I(H)obs is the 
observed intensity of the reflection related to H;.a (H) 
are arbitrary positive constants; summation in (1) is 
made over all reciprocal-lattice vectors H labelling 
the reflections of the intensity array. 

It follows from (l) that in the case of high-precision 
intensity measurements the minimum value of the R 
factor tends to zero at the atomic configuration corre- 
sponding to the correct structure. Therefore, the crys- 
tal structure determination may be reduced to finding 
the global minimum of the R factor in the multi- 
dimensional space of many variables (coordinates of 
all atoms in a unit cell). Similar problems arise in 
various fields of research. Their solution faces serious 
difficulties that increase dramatically with increasing 
number of variables. The main difficulty is the many 
local minima in which the system gets trapped during 
the minimization procedure. Being trapped in a local 
minimum results in determination of an incorrect 
configuration. 

These difficulties can be overcome in a new 
statistical mechanics approach to the structure deter- 
mination problem (Khachaturyan, Semenovskaya & 
Vainshtein, 1979, 1981), which is based on the idea 
that the minimization problem can be reformulated 

in te rms  of statistical mechanics whose well 
developed theoretical concepts could be fruitfully 
applied to the new area of research. This idea was 
realized by utilizing the model of a thermodynamic 
system whose mathematical characteristics are 
analogous to the characteristics of the minimization 
problem for the function R. 

The statistical mechanics approach has two advan- 
tages. The first is that statistical mechanics is created 
to deal with systems described by numerous degrees 
of freedom. Therefore any statistical mechanics 
model in the crystal structure determination problem 
does not impose too strict limitations on the number 
of atoms per unit cell. The second is that a proper 
statistical mechanics formalism necessarily involves 
thermal fluctuations. This is of especial importance 
since escapes from local free-energy minima occur 
only because of fluctuations, viz because of fluctu- 
ation-induced uphill 'diffusion'. 
~ Since statistical mechanics studies the most prob- 
able states of a system, the most probable configu- 
rations at low temperature should be close to the 
ground-state configuration providing the absolute 
minimum of the model 'Hamiltonian',  R. This is why 
the determination of the equilibrium state at low 
temperature enables us to solve the minimization 
problem for the R factor and thus to solve the struc- 
ture determination problem. 

Below we shall use the same model system as in 
the previous papers (Khachaturyan, Semenovskaya 
& Vainshtein, 1979, 1981), inwhich atoms occupying 
an independent part of a unit cell are regarded as a 
non-ideal gas, the independent part of the unit cell 
as a vessel, the R factor (1) as a Hamiltonian simulat- 
ing interaction in the non-ideal gas. The temperature 
T, the partition sum Z and the free energy qb are 
introduced according to the conventional equations 

Z=Y, exp(-R/T)  and ~ = - T l n Z ,  (3)  

where the summation is carried out over all atomic 
configurations in the independent part of a unit cell. 
The equilibrium atomic distribution in this system at 
low temperature yields the structure, slightly disor- 
dered, however, by 'thermal' fluctuations (this disor- 
dering is a model analogue of the real temperature 
disordering described by the Debye-Waller factor). 

Khachaturyan, Semenovskaya & Vainshtein (1979, 
1981) found the low-temperature equilibrium state 
related to the true crystal structure by means of 
numerical solution of Onsager kinetic equations. 
Below we shall propose to utilize the more convenient 
Monte Carlo method (Metropolis, Rosenbluth, 
Rosenbluth, Teller & Teller, 1953) formulated to solve 
the statistical mechanics problems in liquids, alloys, 
magnetic materials and so on. The main advantage 
of the Monte Carlo method is that it enables us to 
find the equilibrium stable state corresponding to 
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the absolute minimum of the free energy at a given 
temperature whereas the kinetic equation method 
sometimes yields a metastable state corresponding 
to an incorrect structure. 

2. Monte Carlo simulation of thermodynamic 
equilibrium 

A Monte Carlo sampling scheme similar to that used 
by Metropolis, Rosenbluth, Rosenbluth, Teller & Tel- 
ler (1953) and others to compute the desired ther- 
modynamic functions in statistical mechanics is 
chosen for the crystal structure determination. The 
idea of the Monte Carlo method consists in simulation 
of random walks of atoms by means of constant 
stepwise transition probabilities for elementary 
'diffusion' events, which generate the succession of 
atomic configurations forming a Markov chain. The 
probabilities of elementary atomic transitions are 
chosen so that mean values over the segment of the 
Markov chain, which starts from a certain atomic 
configuration remote from the beginning of the chain, 
would tend to the mean values over the petite canoni- 
cal ensemble with the given model Hamiltonian R. 

The brief account of the Monte Carlo algorithm 
formulated for the crystal structure determination 
problem is as follows. 

Let N specific atoms be contained in the indepen- 
dent part of a unit cell. To simplify the calculation 
procedure the atoms are assumed to migrate only 
over No sites of a fine rectangular grid inscribed in 
the independent part of the unit cell. These N atoms 
are tested by picking them up one by one in a random 
sequence.* 

Let one of N atoms be chosen. This atom may 
migrate to one of the six nearest-neighbour sites of 
the grid. The random number generator selects a 
nearest-neighbour site to which the atom may migrate. 
The question whether or not the atom will move to 
the selected site is answered as follows. 

1. If the selected nearest-neighbour site is already 
occupied by an atom, the migration is not made and 
the previous configuration is taken to be the new 
configuration. 

2. If the selected nearest site is vacant, then the 
change in R factor, AR, resulting from the migration 
to the nearest site is computed, Two outcomes are 
then possible: 

(a) if AR <_ 0, the migration to the tested nearest 
site is made and the resultant configuration is assumed 
to be the new one; 

(b) if AR > 0, the migration may be realized with 
the probability exp (-AR/T): it occurs if the random 
number generator gives a number ~ taken from a 
uniform distribution on the interval (0, 1), which 

* The final result does not depend on the order of testing N 
atoms (Fosdick, 1959). 

satisfies the inequality ~ < exp ( - A R / T ) "  and it does 
not occur if ~ - > e x p ( - a R / T ) .  In both cases the 
resultant configuration is taken to be the new one. 

The chosen fundamental stepwise transition prob- 
abilities between the nearest sites of the grid produce 
a Markov chain of atomic configurations. The station- 
ary segment of the Markov chain sufficiently remote 
from its starting point consists of atomic configur- 
ations (states) that are distributed according to the 
petite canonical ensemble (Metropolis, Rosenbluth, 
Rosenbluth, Teller & Teller, 1953" Fosdick, 1959). In 
other words, if the 'time', z, enumerating the success- 
ive atomic configurations of the chain is introduced 
and the stationary part of the Markov chain starts 
from the 'time' z = to, the average of any function 
calculated over configurations of the stationary seg- 
ment of the chain in the "time' interval (to, to + t) tends 
to the thermodynamic average at t ~ oo. For example, 
the average structure amplitude over the 'time' inter- 
val (to, to+ t) is val (to, to+ t) is 

l T=to+t 

(F(H,  t ) ) = 7  ~-' F(H,  r), (4) 

where F(H,  7) is the structure amplitude (2) related 
to the "rth configuration of the Markov chain. At 
t -~ oo, (F(H,  t)) -~ (F(H))T, where (F(H))T is the ther- 
modynamic average structure amplitude. The corre- 
sponding average density is 

(p(r))T = E ( F ( n ) ) r  exp ( i2~Ur) .  (5) 
H 

At low temperature where the system is close to the 
ground state (the state with the minimum R factor), 
its average amplitude ( F ( H ) ) r  and the average 
density (5) tend to the structure amplitudes F(H)ob, 
and density of the structure wanted, respectively. 
Therefore, at low temperatures and t ~ o0 the phases 
q~(H, t) of the average amplitudes (F(H,  t)) tend to 
the phases ~oo(H) of the structure amplitudes F(H)obs 
of the structure wanted. 

On the contrary, a temperature increase results in 
disordering of the structure because of ' thermal'  
fluctuations and thus leads to deviation of the calcu- 
lated phases ~(H, t) from their true values, ~o(H). 
Since the measure of disordering is deviation of the 
calculated average structure amplitudes (F(H,  t)) 
from their true values F(H)ob~, a quantitative criterion 
of reliability of the calculated phases ~(H, t) is the 
ratio 

r/(H, t )=  [(F(H, t))l/lF(H)obs[ 

= I(F(H, t))l/[ l(H)obs] '/2 

At t ~  oo, r/(H, t ) ~  r/r(H),  where r/r(H) is the ther- 
modynamic average. The ratio r/r(H) plays the part 
of the long-range parameter of the reflection H since 
r/r(H) = 0 at the completely disordered state when 
(p(r))r  = constant and thus ( F ( H ) ) r  = 0. At T ~  0 
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when the system approaches the completely ordered 
state corresponding to the true structure, (F (H) ) r  
F(H)obs and thus r /T (H) -  1. Therefore, the closer 
r/r(H) is to unity, the more reliable is the determina- 
tion of the structure amplitude (F (H) ) r  and its phase 
~(H). 

The following conclusion can thus be made: the 
temperature T cannot be chosen too high because it 
would result in considerable deviation of the calcu- 
lated phases ~(H, t) from their true values ~o(H) 
caused by 'temperature disordering'; the temperature 
T cannot however be made too low because it would 
result in 'temperature freezing', i.e. 'thermoactivated' 
migration of atoms would cease. 

3. Testing the Monte Carlo algorithm in the case of 
L-proline 

Potentialities of the Monte Carlo method in structure 
analysis are tested below for the same L-proline struc- 
ture on which the method of kinetic equations 
(Khachaturyan, Semenovskaya & Vainshtein, 1979, 
1981) has already been tested. The structure of L- 
proline, C4H7(NH)COOH, is orthorhombic with a = 
11.55, b = 9.02, c = 5.20 A and belongs to space group 
P212~2~ (Kayushina & Vainshtein, 1966). The rec- 
tangular grid with N o = 1 5 x l 5 × 1 5  sites was 
inscribed in an independent part of the unit cell of 
volume ½a x lb xc. Its sites are occupied by eight 
atoms: five C atoms, two O atoms and one N atom.* 
Random walk of these atoms generating the Markov 
chain was realized by means of the stochastic pro- 
cedure described in § 2. 

The calculations were carried out under so-called 
toroidal boundary conditions, which are imposed by 
the crystallographic symmetry: exit of any atom from 
the independent part of the unit cell through one of 
its six faces automatically implies that this atom 
returns to the same independent part of the unit cell 
through another face in accordance with the multipli- 
cation rule for a point in the P212121 space group: 

1 1 (x, y, z) ~ ( I -  x, -y ,  I +  z) --> (5+ x, 5 -  y, - z )  

-+ ( - x ,  1+ Y, ½- z), 

where x = rx/ a, y = ry/ b, z = rz/ C are dimensionless 
coordinates of the unit-cell point r=(rx ,  ry, rz). 
Within the independent part of the unit cell 

O<-x<½,0<_y<½,0<_z<l .  

The coordinates of No = 15 x 15 x 15 sites of the grid 
inscribed in the independent part of the unit cell are 

x , , ,=3A-6 (m-½) , yn=~(n -½) , zp=~(p -½) ,  (6) 

where m, n, p are integer coordinates of the site: 

1 <_ m_< 15, 1_< n_< 15, l_<p_< 15. 

* Low sca t te r ing  h y d r o g e n  a t o m s  are  no t  t aken  in to  accoun t .  

The R factor was chosen in the form 

= A - ~ { ~  ' b ( H ) l F ( H ) - [ I ( H ) o b s ]  ~/2 exp [i~po(n)]l R 

+Y~" a ( n ) l l F ( n ) l - [ z ( n ) o b s ]  x/2 I ,  (7) 
H J 

where the normalization constant A is 

A= E' b(H)[I(H)obj ~/2 + Y~" a(H)[I(H)obJ '/2, 
H H 

a(H) = 1, b(H) = 2. The summation Y.h ( . . . )  was car- 
ried out over four reflections, 210, 201,720, 032. The 
phases ~oo(H) for them were chosen to be zr, -½zr, 
-17r, -17r, respectively. Such a choice fixes the origin 
of the structure and its enantiomorphic form. The 
summation ~ i  ( . . . )  was taken over the remaining 
reflections. 

The 'observed' array of intensities {l(H)ob~} was 
calculated from the known atomic coordinates 
(Kayushina & Vainshtein, 1966). These coordinates 
expressed in terms of m, n, p [see (6)] are 

C(1) (1.37, 8.54, 2.46); C(2) (2.15, 9.35, 6.72); 

C(3) (5.09, 12.68, 7.25); C(4) (8.27, 9.65, 6.69); 

C(5) (7.28, 5.39, 8-85); O(1) (2.21, 4-82, 0-96); 

0(2) (14.81, 4.58, 0.51); N (3.47, 4.94, 8.34). 

(8) 
The coordinates m, n, p in (8) are not integers since 

the real locations of the atoms do not coincide with 
sites of the grid (6). The assumption that the atoms 
are located on the sites of the grid and thus are shifted 
from their real positions is equivalent to introducing 
a certain artificial 'experimental' error in 'observed' 
intensities. The error is of the order of 10%. The 
structure amplitudes in the space group P212~2~ were 
calculated from the equations 

j = 8  

Re F ( H ) =  ~ fj(H) c o s 2 7 r [ h x j - ( h - k ) / 4 ]  
j----I 

x cos 27r[ky j - (  k -  l)/4] 

x cos 27r[lzj - ( l -  h)/4] 

j = 8  

Im F(I-I)=-  ~ fj(H) sin27r[hxj-(h-k)/4] 
j = l  

x sin 2 cr[ kyj - ( k - l) / 4] 

xsin 27r[lzj - (  l -  h )/4], (9) 

where fj is the atomic factor of the j th atom, h, k, l 
are Miller indexes of the reciprocal-lattice vector H. 
The average structure amplitude is determined by (4). 
The corresponding phases ~(H, t) were calculated 
from the equation 

~p(n, t) = arctan (Im (F(H,  t))/Re (F(H,  t))). (10) 

The calculations were carried out at T = 0.0055. The 
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Table 1. Summary of averaging data 

T I M E  = 704000 J U M P S  = 66823 

h k l I ( H ) o b  s ~/(H, t) q~o(H) ~o(H, t) h k ! I ( H ) o b  s r / (H ,  t)  ~oo(H) ~ ( H ,  t) 

0 0 2 0.73E 04 0.91E 00 0.0 0.0 0 2 0 0.45E 04 0-95E 00 3.14 3.14 
2 1 1 0.30E 04 0.96E 00 1.45 1.45 2 I 0 0.33E 04 0.10E 01 3.14 -3 .14 
0 4 0 0.16E 04 0.97E 00 3.14 3.14 0 4 2 0-16E 04 0.84E 00 3.14 3.14 
4 0 0 0.13E 04 0.87E 00 0"0 0.0 5 I 0 0.56E 03 0.85E 00 1.57 1.57 
4 2 0 0.87E 03 0.67E 00 3.14 3.14 4 I 0 0.87E 03 0.52E 00 3.14 3-14 
2 0 1 0-13E04 0.98E 00 -1.57 -1.57 7 2 0 0.11E 04 0.10E 01 -1.57 -1.57 
2 0 0 0.19E 04 0.74E 00 0.0 0.0 0 3 2 0.85E 03 0.91E 00 - I . 5 7  - ! -57  
3 4 0 0.61E 03 0.69E 00 1.57 1-57 2 i 2 0.68E 03 0.82E 00 -2-95 -3 .00  
7 2 1 0-88E 03 0.61E00 -3.13 3-08 3 3 0 0.46E 03 0.34E 00 -1.57 -1.57 
3 2 ! 0.59E 03 0.67E 00 -2.45 -2.63 5 2 0 0.40E 03 0.59E 00 - 1.57 - 1.57 
5 5 0 0.99E 03 0.67E 00 - I . 57  - I . 5 7  0 1 1 0.51E03 0.92E 00 -1.57 -1.57 
1 0 3 0.42E 03 0.53E 00 1 "57 1.57 6 I 1 0.56E 03 0.58E 00 1.58 1.44 
1 0 I 0.74E 03 0.68E 00 1.57 1.57 5 1 2 0.48E 03 0-73E 00 2-01 1-74 
3 4 1 0.57E 02 0-30E 00 1.17 0.77 0 1 2 0-58E 03 0.87E 00 1.57 1.57 
3 3 2 0.34E 03 0.42E 00 -1.66 - I . 6 7  2 2 2 0.29E 03 0.86E 00 - I . 6 8  -1-73 
2 5 1 0.44E 03 0"86E 00 - 1.49 - 1.50 0 2 1 0.45E 03 0.79E 00 0-0 -0 .00  
0 2 2 0.35E 03 0.89E 00 3.14 3.14 6 0 0 0.28E 03 0.64E 00 3-14 3.14 
0 4 1 0-23E 03 0.63E 00 3.14 3.14 4 3 0 0.37E 03 0.64E 00 0.0 0-0 
5 2 2 0.31E03 0.52E 00 -1.84 -1.77 6 3 0 0.35E 03 0.44E 00 0.0 0.00 
7 2 2 0.77E 03 0.94E 00 -1.27 - I . 43  0 2 3 0.58E 03 0.71E 00 0.0 0.0 
6 2 0 0-27E 03 0.71E00 0"0 0.00 2 4 2 0.28E 03 0.72E 00 2"94 2-69 
5 3 2 0.35E 03 0.69E 00 -1.08 -1.49 5 1 1 0.28E 03 0-69E 00 -1.97 -2-38 
1 3 0 0-18E03 0.73E 00 -1.57 -1.57 2 2 0 0.30E 03 0.80E 00 3.14 3-14 
1 7 0 0-79E 03 0.64E 00 1.57 1.57 3 2 0 0.22E 03 0.56E 00 - 1.57 - 1.57 
5 3 1 0.29E 03 0.82E 00 0.89 0.60 1 2 1 0.36E 03 0-63E 00 -2.08 - 1.77 
1 6 0 0.21E 03 0.63E 00 -1.57 -1.57 2 3 1 0.13E 03 0.90E 00 2-09 2.25 
2 3 0 0.12E03 0.78E 00 3.14 3-14 3 2 3 0.33E 03 0.56E 00 -2.18 -2 .48 
6 1 0 0.22E 03 0.13E01 3"14 3.14 5 3 0 0.12E 03 0.93E 00 -1.57 -1.57 
2 3 3 0.32E 03 0-73E 00 2.01 2.21 0 3 4 0-99E 03 0-77E 00 -1-57 -1-57 

R M  = 0-13033 

8 9 7 2 9 3 2 10 7 3 5 9 
5 13 8 15 5 15 2 5 I 7 5 9 

latter temperature was chosen as a compromise 
between two contradictory requirements, to perform 
computations at the lowest possible temperature and 
to maintain a sufficient number of successful trials 
for atomic migration (at T-- 0.0055 atomic migration 
occurs in about 10% of all trials).* 

The random distribution of eight atoms, 5C + 20  + 
N, produced by the random number generator was 
used as the initial configuration of the Markov chain 
at 7 = 0. The averaging procedure was started from 
z = t 0 = 2 . 2 4 x 1 0 6 .  The averaging interval, t, was 
chosen to be t = 7.04 x l0 s. The averaging was taken 
over configurations separated by the 'time' interval 
At = 32 to avoid correlation between successive con- 
figurations. 

The summary of averaging data is presented in 
Table 1. The columns of the table are reflection 
indexes h,k,l, corresponding to the observed 
intensities l(H)obs, ' long-range-order parameters'  
rl(H, t), true phases, q~o(H), and calculated phases, 
q~(H, t), at t = 7.04 x l05. 

Comparison of the phases q~o(H) and q~(H, t) in 
the fourth and fifth columns shows that all phases 

* T h e  t e m p e r a t u r e  T has  to be  o f  the  s a m e  o r d e r  o f  m a g n i t u d e  

as the  l owes t  d i f f e r ence  b e t w e e n  va lues  AR f r o m  the  s p e c t r u m  

{AR}. 

q~(H, t) are correct: the maximum deviation ---23 ° is 
observed for three reflections, 341,532, 511. 

There is another interesting fact that deserves dis- 
cussion. During the computer simulation of the 
Markov chain, the comparison of the R factors of all 
configurations of the chain was carried out and the 
coordinates of all atoms forming the minimum R 
factor configuration were 'memorized'.  The minimum 
R factor attained along the entire Markov chain was 
Rmi,--0" 13033. The coordinates of the configuration 
with the minimum R factor are presented at the 
bottom of Table l in terms of integers m, n, p [see 
(6)]. The coordinates in Table 1 are arrayed in the 
same sequence as in (8): the upper line yields the (m, 
n, p) coordinates of atoms C(1), C(2), C(3), C(4); 
the bottom line yields the coordinates of C(5), O( 1 ), 
O(2), N. Comparison of the atomic coordinates 
(m, n, p) displayed in Table 1 with the correct coor- 
dinates (8) shows that 

(i) the positions of all eight atoms are correctly 
determined within the accuracy of a spacing of the 
grid with No = 15 x 15 × 15 sites (deviation of each 
coordinate is less than unity); 

(ii) distribution of the atoms over their positions 
differs from the correct one. The difference is associ- 
ated with the only faulty interchange between the N 
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and C(5) atoms IN ~ C(5)]. The other interchanges 
involve atoms of the same kind, i.e. result in mere 
renumbering of the C and O atoms. 'Mixing up'  the 
N and C(5) atoms in the crystal structure determina- 
tion process is quite natural because it is caused by 
the small 'diffraction distinction' between them. 
Refining the kinds of atoms can be easily done either 
in the framework of the Monte Carlo scheme (increas- 
ing No and decreasing T) or by means of the conven- 
tional procedure when heights of electron density 
peaks calculated through the phases ~(H, t) are com- 
pared. 

Table 1 displays results of calculations in the 
framework of the simplest scheme: random initial 
conditions, the grid with No = 15 x 15 × 15 and con- 
stant temperature T = 0.0055. It was, however, shown 
that the proposed method yields the same correct 
crystal structure regardless of initial conditions and 
the averaging interval (to, to+ t) of the stationary part 
of a Markov chain. 

It was shown that at low resolution when No = 
l0 x l0 x l0 (spacing of the grid of the order of 0.5 
is close to the atomic radius) accurate crystal structure 
determination turns out to be impossible. This is not 
too surprising because in this case the atomic con- 
figuration related to the R-factor minimum differs 
considerably from the correct one. What is surprising 
is that even in this unfavourable case the calculations 
at T = 0.007 and T = 0.0055 yield correct phases for 
about 80% of all reflections entering the R factor. 
Furthermore, the calculated phases of all reflections 
with r/(H, t) > 0.4 are correct, i.e. the value of r/(H, t) 
may be regarded as a reliability criterion. 

As for higher resolution, when No % 15 x 15 x 15 
(spacing of the grid of the order of 0.3 A is close to 
half of the atomic radius), the crystal structure deter- 
mination was attained from any initial conditions. 

The fastest way to find the structure is, however, 
stepwise 'cooling' similar to that employed earlier 
(Khachaturyan,  Semenovskaya & Vainshtein, 1979, 
1981). The L-proline structure was determined by 
means of the following scheme. The Markov chain 
was generated at T = 0 . 0 0 7  on the grid with No = 
l0 x 10 × l0 with t = 6.4 × l05. The minimum R-factor 
configuration attained was utilized as the initial one 
for further calculation at T = 0.0055 on the 15 x 15 x 
15 grid with t - -1 .36x106.  The minimum R-factor 
configuration obtained also solves the structure deter- 
mination problem within the accuracy of a 15 x 15 x 
15 grid spacing. 

Of course, the L-proline structure with 32 atoms 
per unit cell and eight atoms per independent part 

of the unit cell is not too complex by modern stan- 
dards. It is described nevertheless by 24 independent 
degrees of freedom. This is considerably higher than 
the number of degrees of freedom acceptable for a 
non-local method (Gelfand, Vul, Ginzburg & 
Fedorov, 1966), the only operative method based on 
the R-factor minimization. In contrast to this non- 
local minimization method, the proposed statistical 
mechanics algorithm seems to be free from constraints 
associated with the number of atoms in the unit cell. 
Furthermore, the full advantages of the Monte Carlo 
method are usually revealed in the cases of systems 
with many variables. Numerous successful calcula- 
tions of thermodynamical  characteristics of non-ideal 
gas models operating with about l0 2-10 3 atoms per 
cyclic volume (see, for example, Binder, 1979; Wood, 
1968) seem to confirm this conclusion, because the 
non-ideal gas models differ in no way from the statis- 
tical mechanics model considered in this paper. We 
hope that the direct proof of this statement will be 
obtained in our calculations for structures with more 
atoms per unit cell, which are under way now. 

In conclusion, the following point should be 
especially emphasized. The statistical mechanics 
approach may be efficient not only in the case of the 
structure analysis; it can be an efficient method of 
solving various deterministic minimization problems 
with many variables. But the most exciting advantage 
of the statistical mechanics approach is that it may 
be absolutely irreplaceable in dealing with optimiz- 
ation problems for big systems composed of elements 
with probabilistic interaction between them. 
Economics and biological models may serve as good 
examples of such systems. 
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